collaborating-with-gemini
💡 Summary
A bridge skill that delegates coding tasks to the Gemini CLI for prototyping, debugging, and code review.
🎯 Target Audience
🤖 AI Roast: “It's a thin wrapper that mostly delegates the hard work of being an AI agent to another AI agent's CLI.”
The skill executes an external CLI (Gemini) which likely has filesystem and network access, posing risks of arbitrary code execution or data exfiltration. Mitigation: Strictly control the `--cd` parameter and run the agent in a sandboxed environment with limited permissions.
name: collaborating-with-gemini description: Delegates coding tasks to Gemini CLI for prototyping, debugging, and code review. Use when needing algorithm implementation, bug analysis, or code quality feedback. Supports multi-turn sessions via SESSION_ID.
Quick Start
python scripts/gemini_bridge.py --cd "/path/to/project" --PROMPT "Your task"
Output: JSON with success, SESSION_ID, agent_messages, and optional error.
Parameters
usage: gemini_bridge.py [-h] --PROMPT PROMPT --cd CD [--sandbox] [--SESSION_ID SESSION_ID] [--return-all-messages] [--model MODEL]
Gemini Bridge
options:
-h, --help show this help message and exit
--PROMPT PROMPT Instruction for the task to send to gemini.
--cd CD Set the workspace root for gemini before executing the task.
--sandbox Run in sandbox mode. Defaults to `False`.
--SESSION_ID SESSION_ID
Resume the specified session of the gemini. Defaults to empty string, start a new session.
--return-all-messages
Return all messages (e.g. reasoning, tool calls, etc.) from the gemini session. Set to `False` by default, only the agent's final reply message is
returned.
--model MODEL The model to use for the gemini session. This parameter is strictly prohibited unless explicitly specified by the user.
Multi-turn Sessions
Always capture SESSION_ID from the first response for follow-up:
# Initial task python scripts/gemini_bridge.py --cd "/project" --PROMPT "Analyze auth in login.py" # Continue with SESSION_ID python scripts/gemini_bridge.py --cd "/project" --SESSION_ID "uuid-from-response" --PROMPT "Write unit tests for that"
Common Patterns
Prototyping (request diffs):
python scripts/gemini_bridge.py --cd "/project" --PROMPT "Generate unified diff to add logging"
Debug with full trace:
python scripts/gemini_bridge.py --cd "/project" --PROMPT "Debug this error" --return-all-messages
Pros
- Leverages a powerful external LLM (Gemini) for complex tasks
- Supports multi-turn conversations for iterative work
- Simple command-line interface for easy integration
Cons
- Adds dependency on an external CLI tool and its API
- Limited control and customization over the Gemini agent's behavior
- README lacks details on error handling and Gemini CLI setup
Disclaimer: This content is sourced from GitHub open source projects for display and rating purposes only.
Copyright belongs to the original author GuDaStudio.
