dynamodb
💡 Summary
A comprehensive reference and guide for interacting with AWS DynamoDB, covering core concepts, CLI/boto3 operations, best practices, and troubleshooting.
🎯 Target Audience
🤖 AI Roast: “This skill is essentially a well-organized cheat sheet, proving that sometimes the most useful tool is just knowing where to look.”
The skill requires AWS credentials with DynamoDB permissions, posing a risk of privilege escalation or data exposure if credentials are mishandled. Mitigation: Use IAM roles with least-privilege policies and never hardcode credentials in scripts.
name: dynamodb description: AWS DynamoDB NoSQL database for scalable data storage. Use when designing table schemas, writing queries, configuring indexes, managing capacity, implementing single-table design, or troubleshooting performance issues. last_updated: "2026-01-07" doc_source: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
AWS DynamoDB
Amazon DynamoDB is a fully managed NoSQL database service providing fast, predictable performance at any scale. It supports key-value and document data structures.
Table of Contents
Core Concepts
Keys
| Key Type | Description | |----------|-------------| | Partition Key (PK) | Required. Determines data distribution | | Sort Key (SK) | Optional. Enables range queries within partition | | Composite Key | PK + SK combination |
Secondary Indexes
| Index Type | Description | |------------|-------------| | GSI (Global Secondary Index) | Different PK/SK, separate throughput, eventually consistent | | LSI (Local Secondary Index) | Same PK, different SK, shares table throughput, strongly consistent option |
Capacity Modes
| Mode | Use Case | |------|----------| | On-Demand | Unpredictable traffic, pay-per-request | | Provisioned | Predictable traffic, lower cost, can use auto-scaling |
Common Patterns
Create a Table
AWS CLI:
aws dynamodb create-table \ --table-name Users \ --attribute-definitions \ AttributeName=PK,AttributeType=S \ AttributeName=SK,AttributeType=S \ --key-schema \ AttributeName=PK,KeyType=HASH \ AttributeName=SK,KeyType=RANGE \ --billing-mode PAY_PER_REQUEST
boto3:
import boto3 dynamodb = boto3.resource('dynamodb') table = dynamodb.create_table( TableName='Users', KeySchema=[ {'AttributeName': 'PK', 'KeyType': 'HASH'}, {'AttributeName': 'SK', 'KeyType': 'RANGE'} ], AttributeDefinitions=[ {'AttributeName': 'PK', 'AttributeType': 'S'}, {'AttributeName': 'SK', 'AttributeType': 'S'} ], BillingMode='PAY_PER_REQUEST' ) table.wait_until_exists()
Basic CRUD Operations
import boto3 from boto3.dynamodb.conditions import Key, Attr dynamodb = boto3.resource('dynamodb') table = dynamodb.Table('Users') # Put item table.put_item( Item={ 'PK': 'USER#123', 'SK': 'PROFILE', 'name': 'John Doe', 'email': 'john@example.com', 'created_at': '2024-01-15T10:30:00Z' } ) # Get item response = table.get_item( Key={'PK': 'USER#123', 'SK': 'PROFILE'} ) item = response.get('Item') # Update item table.update_item( Key={'PK': 'USER#123', 'SK': 'PROFILE'}, UpdateExpression='SET #name = :name, updated_at = :updated', ExpressionAttributeNames={'#name': 'name'}, ExpressionAttributeValues={ ':name': 'John Smith', ':updated': '2024-01-16T10:30:00Z' } ) # Delete item table.delete_item( Key={'PK': 'USER#123', 'SK': 'PROFILE'} )
Query Operations
# Query by partition key response = table.query( KeyConditionExpression=Key('PK').eq('USER#123') ) # Query with sort key condition response = table.query( KeyConditionExpression=Key('PK').eq('USER#123') & Key('SK').begins_with('ORDER#') ) # Query with filter response = table.query( KeyConditionExpression=Key('PK').eq('USER#123'), FilterExpression=Attr('status').eq('active') ) # Query with projection response = table.query( KeyConditionExpression=Key('PK').eq('USER#123'), ProjectionExpression='PK, SK, #name, email', ExpressionAttributeNames={'#name': 'name'} ) # Paginated query paginator = dynamodb.meta.client.get_paginator('query') for page in paginator.paginate( TableName='Users', KeyConditionExpression='PK = :pk', ExpressionAttributeValues={':pk': {'S': 'USER#123'}} ): for item in page['Items']: print(item)
Batch Operations
# Batch write (up to 25 items) with table.batch_writer() as batch: for i in range(100): batch.put_item(Item={ 'PK': f'USER#{i}', 'SK': 'PROFILE', 'name': f'User {i}' }) # Batch get (up to 100 items) dynamodb = boto3.resource('dynamodb') response = dynamodb.batch_get_item( RequestItems={ 'Users': { 'Keys': [ {'PK': 'USER#1', 'SK': 'PROFILE'}, {'PK': 'USER#2', 'SK': 'PROFILE'} ] } } )
Create GSI
aws dynamodb update-table \ --table-name Users \ --attribute-definitions AttributeName=email,AttributeType=S \ --global-secondary-index-updates '[ { "Create": { "IndexName": "email-index", "KeySchema": [{"AttributeName": "email", "KeyType": "HASH"}], "Projection": {"ProjectionType": "ALL"} } } ]'
Conditional Writes
from botocore.exceptions import ClientError # Only put if item doesn't exist try: table.put_item( Item={'PK': 'USER#123', 'SK': 'PROFILE', 'name': 'John'}, ConditionExpression='attribute_not_exists(PK)' ) except ClientError as e: if e.response['Error']['Code'] == 'ConditionalCheckFailedException': print("Item already exists") # Optimistic locking with version table.update_item( Key={'PK': 'USER#123', 'SK': 'PROFILE'}, UpdateExpression='SET #name = :name, version = version + :inc', ConditionExpression='version = :current_version', ExpressionAttributeNames={'#name': 'name'}, ExpressionAttributeValues={ ':name': 'New Name', ':inc': 1, ':current_version': 5 } )
CLI Reference
Table Operations
| Command | Description |
|---------|-------------|
| aws dynamodb create-table | Create table |
| aws dynamodb describe-table | Get table info |
| aws dynamodb update-table | Modify table/indexes |
| aws dynamodb delete-table | Delete table |
| aws dynamodb list-tables | List all tables |
Item Operations
| Command | Description |
|---------|-------------|
| aws dynamodb put-item | Create/replace item |
| aws dynamodb get-item | Read single item |
| aws dynamodb update-item | Update item attributes |
| aws dynamodb delete-item | Delete item |
| aws dynamodb query | Query by key |
| aws dynamodb scan | Full table scan |
Batch Operations
| Command | Description |
|---------|-------------|
| aws dynamodb batch-write-item | Batch write (25 max) |
| aws dynamodb batch-get-item | Batch read (100 max) |
| aws dynamodb transact-write-items | Transaction write |
| aws dynamodb transact-get-items | Transaction read |
Best Practices
Data Modeling
- Design for access patterns — know your queries before designing
- Use composite keys — PK for grouping, SK for sorting/filtering
- Prefer query over scan — scans are expensive
- Use sparse indexes — only items with index attributes are indexed
- Consider single-table design for related entities
Performance
- Distribute partition keys evenly — avoid hot partitions
- Use batch operations to reduce API calls
- Enable DAX for read-heavy workloads
- Use projections to reduce data transfer
Cost Optimization
- Use on-demand for variable workloads
- Use provisioned + auto-scaling for predictable workloads
- Set TTL for expiring data
- Archive to S3 for cold data
Troubleshooting
Throttling
Symptom: ProvisionedThroughputExceededException
Causes:
- Hot partition (uneven key distribution)
- Burst traffic exceeding capacity
- GSI throttling affecting base table
Solutions:
# Use exponential backoff import time from botocore.config import Config config = Config( retries={ 'max_attempts': 10, 'mode': 'adaptive' } ) dynamodb = boto3.resource('dynamodb', config=config)
Hot Partitions
Debug:
# Check consumed capacity by partition aws cloudwatch get-metric-statistics \ --namespace AWS/DynamoDB \ --metric-name ConsumedReadCapacityUnits \ --dimensions Name=TableName,Value=Users \ --start-time $(date -d '1 hour ago' -u +%Y-%m-%dT%H:%M:%SZ) \ --end-time $(date -u +%Y-%m-%dT%H:%M:%SZ) \ --period 60 \ --statistics Sum
Solutions:
- Add randomness to partition keys
- Use write sharding
- Distribute access across partitions
Query Returns No Items
Debug checklist:
- Verify key values exactly match (case-sensitive)
- Check key types (S, N, B)
- Confirm table/index name
- Review filter expressions (they apply AFTER read)
Scan Performance
Issue: Scans are slow and expensive
Solutions:
- Use parallel scan for large tables
- Create GSI for the access pattern
- Use filter expressions to reduce returned data
# Parallel scan import concurrent.futures def scan_segment(segment, total_segments): return table.scan( Segment=segment, TotalSegments=total_segments ) with concurrent.futures.ThreadPoolExecutor() as executor: results = list(executor.map( lambda s: scan_segment(s, 4), range(4) ))
References
Pros
- Extremely practical with ready-to-use code snippets
- Covers both operational commands and architectural best practices
- Includes valuable troubleshooting guidance for common issues
Cons
- Lacks interactive or agent-specific functionality (e.g., schema generation, query building)
- Primarily a static knowledge base rather than an active tool
- No novel features beyond consolidating existing documentation
Disclaimer: This content is sourced from GitHub open source projects for display and rating purposes only.
Copyright belongs to the original author itsmostafa.
