Co-Pilot
Updated 12 hours ago

dynamodb

Iitsmostafa
1.0k
itsmostafa/aws-agent-skills/skills/dynamodb
78
Agent Score

💡 Summary

A comprehensive reference and guide for interacting with AWS DynamoDB, covering core concepts, CLI/boto3 operations, best practices, and troubleshooting.

🎯 Target Audience

AWS Developers building serverless applicationsDevOps Engineers managing NoSQL databasesSolution Architects designing scalable data layersData Engineers implementing data storage patterns

🤖 AI Roast:This skill is essentially a well-organized cheat sheet, proving that sometimes the most useful tool is just knowing where to look.

Security AnalysisMedium Risk

The skill requires AWS credentials with DynamoDB permissions, posing a risk of privilege escalation or data exposure if credentials are mishandled. Mitigation: Use IAM roles with least-privilege policies and never hardcode credentials in scripts.


name: dynamodb description: AWS DynamoDB NoSQL database for scalable data storage. Use when designing table schemas, writing queries, configuring indexes, managing capacity, implementing single-table design, or troubleshooting performance issues. last_updated: "2026-01-07" doc_source: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/

AWS DynamoDB

Amazon DynamoDB is a fully managed NoSQL database service providing fast, predictable performance at any scale. It supports key-value and document data structures.

Table of Contents

Core Concepts

Keys

| Key Type | Description | |----------|-------------| | Partition Key (PK) | Required. Determines data distribution | | Sort Key (SK) | Optional. Enables range queries within partition | | Composite Key | PK + SK combination |

Secondary Indexes

| Index Type | Description | |------------|-------------| | GSI (Global Secondary Index) | Different PK/SK, separate throughput, eventually consistent | | LSI (Local Secondary Index) | Same PK, different SK, shares table throughput, strongly consistent option |

Capacity Modes

| Mode | Use Case | |------|----------| | On-Demand | Unpredictable traffic, pay-per-request | | Provisioned | Predictable traffic, lower cost, can use auto-scaling |

Common Patterns

Create a Table

AWS CLI:

aws dynamodb create-table \ --table-name Users \ --attribute-definitions \ AttributeName=PK,AttributeType=S \ AttributeName=SK,AttributeType=S \ --key-schema \ AttributeName=PK,KeyType=HASH \ AttributeName=SK,KeyType=RANGE \ --billing-mode PAY_PER_REQUEST

boto3:

import boto3 dynamodb = boto3.resource('dynamodb') table = dynamodb.create_table( TableName='Users', KeySchema=[ {'AttributeName': 'PK', 'KeyType': 'HASH'}, {'AttributeName': 'SK', 'KeyType': 'RANGE'} ], AttributeDefinitions=[ {'AttributeName': 'PK', 'AttributeType': 'S'}, {'AttributeName': 'SK', 'AttributeType': 'S'} ], BillingMode='PAY_PER_REQUEST' ) table.wait_until_exists()

Basic CRUD Operations

import boto3 from boto3.dynamodb.conditions import Key, Attr dynamodb = boto3.resource('dynamodb') table = dynamodb.Table('Users') # Put item table.put_item( Item={ 'PK': 'USER#123', 'SK': 'PROFILE', 'name': 'John Doe', 'email': 'john@example.com', 'created_at': '2024-01-15T10:30:00Z' } ) # Get item response = table.get_item( Key={'PK': 'USER#123', 'SK': 'PROFILE'} ) item = response.get('Item') # Update item table.update_item( Key={'PK': 'USER#123', 'SK': 'PROFILE'}, UpdateExpression='SET #name = :name, updated_at = :updated', ExpressionAttributeNames={'#name': 'name'}, ExpressionAttributeValues={ ':name': 'John Smith', ':updated': '2024-01-16T10:30:00Z' } ) # Delete item table.delete_item( Key={'PK': 'USER#123', 'SK': 'PROFILE'} )

Query Operations

# Query by partition key response = table.query( KeyConditionExpression=Key('PK').eq('USER#123') ) # Query with sort key condition response = table.query( KeyConditionExpression=Key('PK').eq('USER#123') & Key('SK').begins_with('ORDER#') ) # Query with filter response = table.query( KeyConditionExpression=Key('PK').eq('USER#123'), FilterExpression=Attr('status').eq('active') ) # Query with projection response = table.query( KeyConditionExpression=Key('PK').eq('USER#123'), ProjectionExpression='PK, SK, #name, email', ExpressionAttributeNames={'#name': 'name'} ) # Paginated query paginator = dynamodb.meta.client.get_paginator('query') for page in paginator.paginate( TableName='Users', KeyConditionExpression='PK = :pk', ExpressionAttributeValues={':pk': {'S': 'USER#123'}} ): for item in page['Items']: print(item)

Batch Operations

# Batch write (up to 25 items) with table.batch_writer() as batch: for i in range(100): batch.put_item(Item={ 'PK': f'USER#{i}', 'SK': 'PROFILE', 'name': f'User {i}' }) # Batch get (up to 100 items) dynamodb = boto3.resource('dynamodb') response = dynamodb.batch_get_item( RequestItems={ 'Users': { 'Keys': [ {'PK': 'USER#1', 'SK': 'PROFILE'}, {'PK': 'USER#2', 'SK': 'PROFILE'} ] } } )

Create GSI

aws dynamodb update-table \ --table-name Users \ --attribute-definitions AttributeName=email,AttributeType=S \ --global-secondary-index-updates '[ { "Create": { "IndexName": "email-index", "KeySchema": [{"AttributeName": "email", "KeyType": "HASH"}], "Projection": {"ProjectionType": "ALL"} } } ]'

Conditional Writes

from botocore.exceptions import ClientError # Only put if item doesn't exist try: table.put_item( Item={'PK': 'USER#123', 'SK': 'PROFILE', 'name': 'John'}, ConditionExpression='attribute_not_exists(PK)' ) except ClientError as e: if e.response['Error']['Code'] == 'ConditionalCheckFailedException': print("Item already exists") # Optimistic locking with version table.update_item( Key={'PK': 'USER#123', 'SK': 'PROFILE'}, UpdateExpression='SET #name = :name, version = version + :inc', ConditionExpression='version = :current_version', ExpressionAttributeNames={'#name': 'name'}, ExpressionAttributeValues={ ':name': 'New Name', ':inc': 1, ':current_version': 5 } )

CLI Reference

Table Operations

| Command | Description | |---------|-------------| | aws dynamodb create-table | Create table | | aws dynamodb describe-table | Get table info | | aws dynamodb update-table | Modify table/indexes | | aws dynamodb delete-table | Delete table | | aws dynamodb list-tables | List all tables |

Item Operations

| Command | Description | |---------|-------------| | aws dynamodb put-item | Create/replace item | | aws dynamodb get-item | Read single item | | aws dynamodb update-item | Update item attributes | | aws dynamodb delete-item | Delete item | | aws dynamodb query | Query by key | | aws dynamodb scan | Full table scan |

Batch Operations

| Command | Description | |---------|-------------| | aws dynamodb batch-write-item | Batch write (25 max) | | aws dynamodb batch-get-item | Batch read (100 max) | | aws dynamodb transact-write-items | Transaction write | | aws dynamodb transact-get-items | Transaction read |

Best Practices

Data Modeling

  • Design for access patterns — know your queries before designing
  • Use composite keys — PK for grouping, SK for sorting/filtering
  • Prefer query over scan — scans are expensive
  • Use sparse indexes — only items with index attributes are indexed
  • Consider single-table design for related entities

Performance

  • Distribute partition keys evenly — avoid hot partitions
  • Use batch operations to reduce API calls
  • Enable DAX for read-heavy workloads
  • Use projections to reduce data transfer

Cost Optimization

  • Use on-demand for variable workloads
  • Use provisioned + auto-scaling for predictable workloads
  • Set TTL for expiring data
  • Archive to S3 for cold data

Troubleshooting

Throttling

Symptom: ProvisionedThroughputExceededException

Causes:

  • Hot partition (uneven key distribution)
  • Burst traffic exceeding capacity
  • GSI throttling affecting base table

Solutions:

# Use exponential backoff import time from botocore.config import Config config = Config( retries={ 'max_attempts': 10, 'mode': 'adaptive' } ) dynamodb = boto3.resource('dynamodb', config=config)

Hot Partitions

Debug:

# Check consumed capacity by partition aws cloudwatch get-metric-statistics \ --namespace AWS/DynamoDB \ --metric-name ConsumedReadCapacityUnits \ --dimensions Name=TableName,Value=Users \ --start-time $(date -d '1 hour ago' -u +%Y-%m-%dT%H:%M:%SZ) \ --end-time $(date -u +%Y-%m-%dT%H:%M:%SZ) \ --period 60 \ --statistics Sum

Solutions:

  • Add randomness to partition keys
  • Use write sharding
  • Distribute access across partitions

Query Returns No Items

Debug checklist:

  1. Verify key values exactly match (case-sensitive)
  2. Check key types (S, N, B)
  3. Confirm table/index name
  4. Review filter expressions (they apply AFTER read)

Scan Performance

Issue: Scans are slow and expensive

Solutions:

  • Use parallel scan for large tables
  • Create GSI for the access pattern
  • Use filter expressions to reduce returned data
# Parallel scan import concurrent.futures def scan_segment(segment, total_segments): return table.scan( Segment=segment, TotalSegments=total_segments ) with concurrent.futures.ThreadPoolExecutor() as executor: results = list(executor.map( lambda s: scan_segment(s, 4), range(4) ))

References

5-Dim Analysis
Clarity9/10
Novelty3/10
Utility10/10
Completeness9/10
Maintainability8/10
Pros & Cons

Pros

  • Extremely practical with ready-to-use code snippets
  • Covers both operational commands and architectural best practices
  • Includes valuable troubleshooting guidance for common issues

Cons

  • Lacks interactive or agent-specific functionality (e.g., schema generation, query building)
  • Primarily a static knowledge base rather than an active tool
  • No novel features beyond consolidating existing documentation

Disclaimer: This content is sourced from GitHub open source projects for display and rating purposes only.

Copyright belongs to the original author itsmostafa.

dynamodb